Nội dung
Sách
Angrist, J. D., & Pischke, J. S. (2014). Mastering'metrics: The path from cause to effect. Princeton university press. (Chapter 1)
Cunningham, S. (2021). Causal Inference. The Mixtape. Yale University Press. (Chapter 4)
Imbens, G. W., & Rubin, D. B. (2015). Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge University Press. (Chapter 1 -3, 7)
Murnane, R. J., & Willett, J. B. (2010). Methods Matter: Improving Causal Inference in Educational
and Social Science Research. Oxford University Press. (Chapter 4 - 5)
Bài báo
Angelucci, M., & De Giorgi, G. (2009). Indirect effects of an aid program: how do cash transfers affect ineligibles' consumption?. American economic review, 99(1), 486-508.
Aron-Dine, A., Einav, L., & Finkelstein, A. (2013). The RAND health insurance experiment, three decades later. Journal of Economic Perspectives, 27(1), 197-222.
Athey, S., & Imbens, G. W. (2017). The econometrics of randomized experiments. In Handbook of economic field experiments (Vol. 1, pp. 73-140). North-Holland.
Banerjee, A. V., & Duflo, E. (2009). The experimental approach to development economics. Annu. Rev. Econ., 1(1), 151-178.
Chetty, R., Hendren, N., & Katz, L. F. (2016). The effects of exposure to better neighborhoods on children: New evidence from the moving to opportunity experiment. American Economic Review, 106(4), 855-902.
Deaton, A., & Cartwright, N. (2018). Understanding and misunderstanding randomized controlled trials. Social science & medicine, 210, 2-21.
Cox, D. R. (1992). Causality: some statistical aspects. Journal of the Royal Statistical Society: Series A (Statistics in Society), 155(2), 291-301.
Heckman, J. J. (1991). Randomization and social policy evaluation. Cambridge, MA: National Bureau of Economic Research.
Heckman, J. J., & Smith, J. A. (1995). Assessing the Case for Social Experiments. Journal of Economic Perspectives, 9(2), 85-110.
Holland, P. (1986). Statistics and Causal Inference. Journal of the American Statistical Association, 81(396), 945-960.
Hudgens, M. G., & Halloran, M. E. (2008). Toward Causal Inference with Interference. Journal of the American Statistical Association, 103(482), 832-842.
Kling, J. R., Ludwig, J., & Katz, L. F. (2005). Neighborhood Effects on Crime for Female and Male Youth: Evidence from a Randomized Housing Voucher Experiment. The Quarterly Journal of Economics, 120(1), 87-130.
Manski, C. F. (2013). Identification of Treatment Response with Social Interactions. The Econometrics Journal, 16(1), S1-S23.
Miguel, E., & Kremer, M. (2004). Worms: Identifying Impacts on Education and Health in the Presence of Treatment Externalities. Econometrica, 72(1), 159-217.
Parker, S. W., & Todd, P. E. (2017). Conditional Cash Transfers: The Case of Progresa/ Oportunidades. Journal of Economic Literature, 55(3), 866-915.
Ravallion, M. (2018). Should the Randomistas (Continue to) Rule?. Center for Global Development Working Paper, 492.
Rubin, D. B. (1974). Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies. Journal of Educational Psychology, 66(5), 688.
Sobel, M. E. (2006). What Do Randomized Studies of Housing Mobility Demonstrate? Causal Inference in the Face of Interference. Journal of the American Statistical Association, 101(476), 1398- 1407.
Słoczynski, T. (2020). Interpreting ols estimands when treatment e ´ ffects are heterogeneous: Smaller groups get larger weights. The Review of Economics and Statistics, 1-27.
Phần mềm