Nội dung
Introduction
Purpose of the book
Target audience
How to get the most out of the book
Overview of Machine Learning
Definitions and key concepts
Brief history and evolution
Machine Learning vs. Traditional Statistical Methods
Differences and similarities
When to use machine learning
Applications in Economics and Finance
Overview of areas impacted by machine learning
Data Collection
Sources of financial data (stock prices, economic indicators, etc.)
Data collection ethics and legality
Data Cleaning and Preparation
Dealing with missing values and outliers
Feature scaling and transformation
Feature Selection and Engineering
Techniques for feature selection
Creating features in economic and financial datasets
Regression Analysis
Linear regression
Polynomial regression
Ridge and Lasso regression
Classification
Logistic regression
Decision trees and random forests
Support vector machines (SVM)
Naive Bayes classifiers
Model Evaluation
Cross-validation techniques
Performance metrics (accuracy, precision, recall, F1-score)
Clustering
K-means clustering
Hierarchical clustering
DBSCAN
Dimensionality Reduction
Principal Component Analysis (PCA)
t-Distributed Stochastic Neighbor Embedding (t-SNE)
Association Rule Mining
Apriori algorithm
Eclat algorithm
Neural Networks and Deep Learning
Fundamentals of neural networks
Deep learning architectures (CNNs, RNNs, LSTMs)
Application in financial time series analysis
Reinforcement Learning
Overview and key concepts
Case studies in algorithmic trading
Ensemble Methods
Bagging and boosting
Advanced forest algorithms
Policy Simulation and Forecasting
Using machine learning to forecast economic conditions
Simulating the impact of economic policies
Risk Management and Assessment
Credit risk modeling
Portfolio risk and optimization
Market and Sentiment Analysis
Analyzing market sentiment from news and social media
Predicting market movements
Stock Market Prediction
Detailed case study using real-world data
Economic Growth Forecasting
Using multiple data sources for GDP prediction
Fraud Detection in Finance
Techniques and implementation strategies
Software and Libraries for Machine Learning
Python and R tools
Specialized software for economic and financial analysis
Building and Deploying Machine Learning Models
From model development to production
Sách
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer. (link)
Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press. (link)
Murphy, K. P. (2023). Probabilistic machine learning: Advanced topics. MIT press.
Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction (Vol. 2, pp. 1-758). New York: springer. (link)
Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: springer. (link)
Giraud, C. (2021). Introduction to high-dimensional statistics. Chapman and Hall/CRC. (link)
Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint (Vol. 48). Cambridge university press. (link)
Fan, J., Li, R., Zhang, C. H., & Zou, H. (2020). Statistical foundations of data science. Chapman and Hall/CRC. (link)
O'Brien, C. M. (2016). Statistical learning with sparsity: the lasso and generalizations. (link)
Bühlmann, P., & Van De Geer, S. (2011). Statistics for high-dimensional data: methods, theory and applications. Springer Science & Business Media. (link)
Bài báo
Alexopoulos, M., Han, X., Kryvtsov, O., & Zhang, X. (2024). More than words: Fed Chairs’ communication during congressional testimonies. Journal of Monetary Economics, 142, 103515.
Angelico, C., Marcucci, J., Miccoli, M., & Quarta, F. (2022). Can we measure inflation expectations using Twitter?. Journal of Econometrics, 228(2), 259-277.
Athey, S., & Imbens, G. (2016). Recursive partitioning for heterogeneous causal effects. Proceedings of the National Academy of Sciences, 113(27), 7353-7360.
Athey, S., & Imbens, G. W. (2019). Machine learning methods that economists should know about. Annual Review of Economics, 11(1), 685-725.
Athey, S., Tibshirani, J., & Wager, S. (2019). Generalized random forests.
Babii, A., Ball, R. T., Ghysels, E., & Striaukas, J. (2023). Machine learning panel data regressions with heavy-tailed dependent data: Theory and application. Journal of Econometrics, 237(2), 105315.
Babii, A., Ghysels, E., & Striaukas, J. (2022). Machine learning time series regressions with an application to nowcasting. Journal of Business & Economic Statistics, 40(3), 1094-1106.
Bandiera, O., Prat, A., Hansen, S., & Sadun, R. (2020). CEO behavior and firm performance. Journal of Political Economy, 128(4), 1325-1369.
Bianchi, F., Ludvigson, S. C., & Ma, S. (2022). Belief distortions and macroeconomic fluctuations. American Economic Review, 112(7), 2269-2315.
Bluwstein, K., Buckmann, M., Joseph, A., Kapadia, S., & Şimşek, Ö. (2023). Credit growth, the yield curve and financial crisis prediction: Evidence from a machine learning approach. Journal of International Economics, 145, 103773.
Buckmann, M., Joseph, A., & Robertson, H. (2021). Opening the black box: Machine learning interpretability and inference tools with an application to economic forecasting. In Data Science for Economics and Finance: Methodologies and Applications (pp. 43-63). Cham: Springer International Publishing.
Castro, P. S., Ajit, D., Du, H., Garratt, R., & Rivadeneyra, F. (2021). Estimating policy functions in payments systems using reinforcement learning (No. 2021-7). Bank of Canada Staff Working Paper.
Chapman, J. T., & Desai, A. (2023). Macroeconomic predictions using payments data and machine learning. Forecasting, 5(4), 652-683.
Chen, M., Joseph, A., Kumhof, M., Pan, X., & Zhou, X. (2021). Deep reinforcement learning in a monetary model. arXiv preprint arXiv:2104.09368.
Davis, J. M., & Heller, S. B. (2017). Using causal forests to predict treatment heterogeneity: An application to summer jobs. American Economic Review, 107(5), 546-550.
Decarolis, F., & Rovigatti, G. (2021). From mad men to maths men: Concentration and buyer power in online advertising. American Economic Review, 111(10), 3299-3327.
Dobbie, W., Liberman, A., Paravisini, D., & Pathania, V. (2021). Measuring bias in consumer lending. The Review of Economic Studies, 88(6), 2799-2832.
Donaldson, D., & Storeygard, A. (2016). The view from above: Applications of satellite data in economics. Journal of Economic Perspectives, 30(4), 171-198.
Farbmacher, H., Löw, L., & Spindler, M. (2022). An explainable attention network for fraud detection in claims management. Journal of Econometrics, 228(2), 244-258.
Gorodnichenko, Y., Pham, T., & Talavera, O. (2023). The voice of monetary policy. American Economic Review, 113(2), 548-584.
Goulet Coulombe, P. (2020). The macroeconomy as a random forest. Available at SSRN 3633110.
Goulet Coulombe, P., Leroux, M., Stevanovic, D., & Surprenant, S. (2022). How is machine learning useful for macroeconomic forecasting?. Journal of Applied Econometrics, 37(5), 920-964.
Gu, S., Kelly, B., & Xiu, D. (2021). Autoencoder asset pricing models. Journal of Econometrics, 222(1), 429-450.
Coble, K. H., Mishra, A. K., Ferrell, S., & Griffin, T. (2018). Big data in agriculture: A challenge for the future. Applied Economic Perspectives and Policy, 40(1), 79-96.
Henderson, J. V., Storeygard, A., & Weil, D. N. (2012). Measuring economic growth from outer space. American economic review, 102(2), 994-1028.
Hinterlang, N., & Tänzer, A. (2021). Optimal monetary policy using reinforcement learning.
Kleinberg, J., Lakkaraju, H., Leskovec, J., Ludwig, J., & Mullainathan, S. (2018). Human decisions and machine predictions. The quarterly journal of economics, 133(1), 237-293.
Larsen, V. H., Thorsrud, L. A., & Zhulanova, J. (2021). News-driven inflation expectations and information rigidities. Journal of Monetary Economics, 117, 507-520.
Liu, J., Li, C., Ouyang, P., Liu, J., & Wu, C. (2023). Interpreting the prediction results of the tree‐based gradient boosting models for financial distress prediction with an explainable machine learning approach. Journal of Forecasting, 42(5), 1112-1137.
Maliar, L., Maliar, S., & Winant, P. (2021). Deep learning for solving dynamic economic models. Journal of Monetary Economics, 122, 76-101.
Mullainathan, S., & Spiess, J. (2017). Machine learning: an applied econometric approach. Journal of Economic Perspectives, 31(2), 87-106.
Naik, N., Raskar, R., & Hidalgo, C. A. (2016). Cities are physical too: Using computer vision to measure the quality and impact of urban appearance. American Economic Review, 106(5), 128-132.
Richardson, A., van Florenstein Mulder, T., & Vehbi, T. (2021). Nowcasting GDP using machine-learning algorithms: A real-time assessment. International Journal of Forecasting, 37(2), 941-948.
Xie, M., Jean, N., Burke, M., Lobell, D., & Ermon, S. (2016, March). Transfer learning from deep features for remote sensing and poverty mapping. In Proceedings of the AAAI conference on artificial intelligence (Vol. 30, No. 1).
Yoon, J. (2021). Forecasting of real GDP growth using machine learning models: Gradient boosting and random forest approach. Computational Economics, 57(1), 247-265.
Zheng, S., Trott, A., Srinivasa, S., Parkes, D. C., & Socher, R. (2022). The AI Economist: Taxation policy design via two-level deep multiagent reinforcement learning. Science advances, 8(18), eabk2607.
Phần mềm
James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). An introduction to statistical learning: With applications in python. Springer Nature. (link)
Gareth, J., Daniela, W., Trevor, H., & Robert, T. (2013). An introduction to statistical learning: with applications in R. Spinger. (link)
Machine Learning for Economic Analysis - Python (link)
Machine Learning in Economics - Paul Schrimpf UBC (link)